
Exploring Lightweight S-boxes Using
Cellular Automata and Reinforcement

Learning

Tarun Ayyagari , Anirudh Saji(B) , Anita John , and Jimmy Jose

National Institute of Technology Calicut, Kozhikode, India
{tarun b180682cs,anirudh b180387cs,anita p170007cs,jimmy}@nitc.ac.in

Abstract. The most important elements of block ciphers are nonlin-
ear functions known as substitution boxes (S-boxes). S-boxes with weak
cryptographic properties are vulnerable to attacks by various cryptanaly-
sis techniques. Cellular Automata has been used to design S-boxes with
good cryptographic properties such as nonlinearity, differential unifor-
mity, balancedness, etc. Cellular Automata based S-boxes also have low
implementation cost due to their highly parallel nature. In this work, we
explore an approach of using Cellular Automata based semi-bent Boolean
functions to generate S-boxes. Genetic algorithms have been used exten-
sively to generate CA based S-boxes. Here we explore the use of Rein-
forcement Learning algorithms that uses relatively well understood and
mathematically grounded framework of Markov Decision Processes as an
alternative to genetic programming.

Keywords: Lightweight S-boxes · Semi-bent Boolean functions ·
Cellular Automata · Reinforcement Learning · Block ciphers

1 Introduction

Cellular Automata (CA) have been proved to be quite useful in the field of cryp-
tography, widely being used as keystream generators for stream ciphers due to
their good pseudo-randomness. CAs have also been proved to be very useful in
creating semi-bent functions with good cryptographic properties as proven in
[1]. In this work, we expand on the work done by Mariot et al. in [1] and con-
sider the different permutations of Boolean functions. Further, we implement
these Boolean functions as the coordinate functions of an S-box. For finding a
suitable subset of Boolean functions to use as coordinate functions, we will use
Reinforcement Learning. By the end, we evolve a good set of functions which
would result in an S-box with good cryptographic properties such as nonlinear-
ity (NL) and differential uniformity (DU). In previous works [2], we have seen
designs using genetic programming to create the S-boxes. Genetic programming
is largely based on heuristics. Genetic programming’s end goal is to evolve an
unfit population of elements using various genetics inspired functions. Genetic
programming has adapted concepts of crossover and mutation from genetics and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Chopard et al. (Eds.): ACRI 2022, LNCS 13402, pp. 17–28, 2022.
https://doi.org/10.1007/978-3-031-14926-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14926-9_2&domain=pdf
http://orcid.org/0000-0003-1847-8291
http://orcid.org/0000-0002-5644-5696
http://orcid.org/0000-0001-8939-6985
http://orcid.org/0000-0001-7074-090X
https://doi.org/10.1007/978-3-031-14926-9_2

18 T. Ayyagari et al.

implemented them in code. The crossover operation involves swapping random
parts of selected pairs of parents (elements from the previous population) to
produce new and different offspring that become part of the new generation.
Mutation involves substitution of some random part of an element with some
other random part of an element. Both these crossover and mutation functions
are used on populations in the hope that the next population would create
stronger off-springs (elements). This process will continue until the desired level
of fitness is observed in a population. Our design involves using Reinforcement
Learning (RL) instead of genetic programming to select the set of semi-bent
Boolean functions that will be used to generate the S-boxes. Both Genetic Pro-
gramming and Reinforcement Learning aim to maximize a defined reward signal.
We aim to experiment with RL as it is based on the mathematically grounded
framework of Markov Decision Processes (MDPs) and on initial analysis, can
be seen to even speed up the convergence process of finding the set of functions
that produce the strongest S-boxes. Reinforcement Learning is used to system-
atically explore the solution space to find the permutation of semi-bent Boolean
functions which has the strongest cryptographic properties.

2 Cellular Automata

CA has been widely researched because of their low implementation cost and
parallel computing nature. These properties of CA make them excellent high
bandwidth cryptographic application solutions. A CA is a system of finite state
automata (cells) which are arranged in a grid. The state of a cell at a timestep
depends on the cell’s state as well as the state of the cell’s neighbours. Each
cell has a local update rule which determines the state of the cell at the next
timestep. The states of a cell in a CA are generally from the set {0,1}. In context
of CAs, we consider both time and space to be discrete. In each timestep, each
cell in the CA is updated according to the local rule of the cell. A local rule can
be represented as a function

f : Sm → S

where m represents the neighbourhood size considered in the update rule. For a
1D CA (where the cells are arranged in a 1-dimensional array), a neighbourhood
size of m indicates that we consider 2m + 1 states in the local update rule (m
on each side and the state itself). For a 2D CA (where the cells are arranged as
a 2-dimensional array), a neighbourhood of m considers 4m + 1 states for the
update rule (m on each side and the state itself). At the ends of the CA, the
neighbourhood wraps around to the other end of the CA. Theoretically, a CA
can be represented in any number of dimensions [3] but increasing the dimen-
sionality also increases the computational cost for the CA. CA are mathemat-
ically complete and lightweight in most of their implementations, thus making
them suitable for a wide range of applications. In our application, we will only
be considering a 1D CA with a neighbourhood size of 1. The output for each
combination can be succinctly represented by a single number called the CA’s
Wolfram Number [5]. An important aspect of the CA rule is that each CA rule

S-boxes Using CA and RL 19

can be represented in their algebraic normal form (ANF) in terms of the states
of the cells considered. The ANF of a Boolean function f can be represented as

f (x1, . . . , xn) =
⊕

I∈2[n]

aIx
I (1)

where, xI =
∏

i∈I xi, 2[n] is the power set of [n] = {1, 2, ..., n} and aI = 0 or 1.
This is how the rules will be represented in code. The algebraic degree of the
Boolean function f is the cardinality of the largest subset I ∈ 2[n] in its ANF,
such that its coefficient aI �= 0.

3 Substitution Boxes (S-boxes)

S-boxes are an integral part of many encryption systems. An S-box can be rep-
resented as

F : Fm
2 → F

n
2

where n,m are two positive integers and F2 is the Galois Field of two elements.
S-boxes are also referred to as (n,m) functions, where n and m correspond
to number of inputs and outputs of the S-box respectively. The function F is
also called a vectorial Boolean function. Function F can be decomposed into the
vector F = (f1, f2, ..., fm) where each function fi is a Boolean function fi : Fn

2 →
F2∀i. The functions fi ∀ i ∈ {1, 2, ...,m} are called the coordinate functions of S-
boxes function F . Any non-trivial linear combination of the coordinate functions
is called a component function of F . For an S-box to be cryptographically strong,
there are a number of properties it must satisfy [7].

3.1 Nonlinearity

The Walsh-Hadamard Transform WF of (n,m) function F is given by

WF (u, v) =
∑

x∈F
n
2

(−1)v·F (x)⊕u·x, v ∈ F
m
2 , u ∈ F

n
2 (2)

The nonlinearity NF of function F is given by the equation:

NF = 2n−1 − 1
2

max
u∈F

n
2 ,v∈(Fm

2)∗
|WF (u, v)| (3)

where (Fm
2)∗ = F

m
2 \{0}. We aim to achieve maximum nonlinearity, i.e., reduce

the linearity between the function F and its component functions. A high value
for nonlinearity will make it harder to perform linear cryptanalysis on the S-
boxes.

20 T. Ayyagari et al.

3.2 Differential Uniformity

For a given (n,m) function F , we can define a difference distribution table DF

as

DF (a, b) = {x ∈ F
n
2 : F (x) ⊕ F (x ⊕ a) = b}, a ∈ F

n
2 , b ∈ F

m
2

The value at (a,b) represents the cardinality of DF (a, b) denoted by δ(a, b). The
differential uniformity of the function F , δF is given by

δF = max
a�=0,b

δ(a, b) (4)

We aim to minimize the differential uniformity of an S-box. A low value of δF
implies that the S-box can withstand differential cryptanalysis. The minimum
attainable value for differential uniformity is 2 and S-boxes which achieve this
value are called almost perfect nonlinear (APN) functions.

4 Semi-bent Boolean Functions

Consider a Boolean function f. From Eq. (3), it is evident that the maximum
value of Nf is achieved when the max term in the equation evaluates to 2

n
2 ,

resulting in the bound: Nf ≤ 2n−1 −2
n
2 −1. Functions that satisfy this bound are

known as bent functions, but these functions only exist for even values of n [8].
Unfortunately, bent functions are not balanced, so they cannot be considered for
use in cryptographic systems. A Boolean function is balanced if its truth table
has equal number of 0’s and 1’s in its output, i.e., for an arbitrary input, it is
equally likely to get a 0 or 1 as the output. The truth table of a Boolean function
is the mapping of the input bits to the output bits for that Boolean function.
Every Boolean function can be represented as a truth table. The quadratic bound
for when n is odd is NF ≤ 2n−1−2

n+1
2 −1. Any function of algebraic degree 2 can

achieve this bound. In general, this bound is not tight when n is odd and n > 7.
It is still an open problem to determine the true upper bound on the nonlinearity
for that case. The Walsh transform for a Boolean function f : Fm

2 → F2 is given
by the equation

Wf (u) =
∑

x∈F
m
2

(−1)f(x)⊕u·x, ∀u ∈ F
m
2 (5)

The Walsh transform of a Boolean function measures the correlation between
the function f and the linear function u · x. It is therefore, used to calculate the
nonlinearity of a Boolean function f . Semi-bent Boolean functions are Boolean
functions whose Walsh transform can be defined as:

Wf (u) =

{
2

n+1
2 if n is odd,

2
n+2
2 if n is even.

(6)

These functions reach the bound on nonlinearity when n is odd. It is possible
for these functions to be balanced, so we shall be considering these to use as

S-boxes Using CA and RL 21

coordinate functions in our construction of S-boxes. A Boolean function is bal-
anced if its truth table has equal number of 0’s and 1’s in its output, i.e., for an
arbitrary input, it is equally likely to get a 0 or 1 as the output.

5 Reinforcement Learning

Reinforcement Learning is the area of machine learning that deals with how intel-
ligent agents interact within an environment to maximize a cumulative reward.
RL is considered to be the 3rd machine learning paradigm alongside supervised
learning and unsupervised learning and is sometimes semi-supervised in nature.
The learner and decision maker is called the agent. The thing it interacts with,
comprising everything outside the agent, is called the environment. RL agents
interact with the environment, which can be classified as a set of states that can
be both continuous or discrete, using a set of pre-defined actions. Each action in
each state, also known as a state-action pair is associated with a reward signal.
The goal of the agent is to maximize the cumulative sum of the reward signals.
It does so by exploring the actions it has never taken before and exploiting the
actions that have been taken and the agent has prior knowledge about. In almost
all RL problems, there exists an exploration-exploitation dilemma. The dilemma
is that the agent has to exploit what it already knows to obtain reward but the
agent also has to explore in order to make better selections in the future. Gen-
erally, on knowing what actions are optimal in a state, the agent still chooses
sub-optimal actions once in a while, in the hopes to achieve a greater cumula-
tive sum of rewards by choosing a different sequence of actions and states. Apart
from the actions and states, an RL problem has 4 more sub-elements: a policy,
a reward signal, a value function and optionally a model of the environment [4].
The policy defines how the agent behaves in a state and what actions it chooses.
In their book, Richard Sutton and Andrew Barto define a policy as a mapping
from states to probabilities of selecting each possible action. A reward signal
defines the goal of a reinforcement learning problem. The value function or the
value of a state is the expectation of total reward it will accumulate over time.
There also exists state action values, which is, the value of taking a particular
action from a particular state. The reward signal, takes into account what is
good as the immediate next step, whereas the value function is far sighted and
looks into the total reward accumulated in the future. The last element is the
model. This is something that mimics the behavior of the environment, or more
generally, that allows inferences to be made about how the environment will
behave. RL problems are usually formulated as a Markov Decision Processes.
In [4], MDPs are defined as a mathematically idealized form of the reinforce-
ment learning problem for which precise theoretical statements can be made.
For a finite MDP, the states, actions and rewards have a well defined discrete
probability. That is,

∑

s′∈S

∑

r∈R
p (s′, r | s, a) = 1,∀s ∈ S, a ∈ A(s) , (7)

22 T. Ayyagari et al.

where S is the set of all states, A(s) is the set of all actions available at the
state s and r is the reward received when after transitioning to state s′ from the
state s on taking action a. In an MDP, the probabilities given by p completely
characterize the environment’s dynamics. That is, the probability of each possible
value for St and Rt depends only on the immediately preceding state and action,
St−1 and At−1, and, given them, not at all on earlier states and actions [4].
The RL agent together with its policy and state action pairs make decisions to
explore the environment, learning and exploiting data learnt through positive
and negative reinforcements to maximize the reward signal.

6 Our Design

Our goal is to build an S-box with excellent cryptographic properties, i.e., high
nonlinearity and low differential uniformity. To implement our goal, it has been
formulated as a 3-part problem. The three parts include Boolean Functions,
Substitution Box and Reinforcement Learning (Fig. 1 and 2).

6.1 Boolean Functions

Our design allows us to use a set of 2 or more semi-bent Boolean functions
to generate the output array. We consider the CA as the input bits to the S-
boxes. The CA length is 8 cells long, the state of each cell is given by the
corresponding input bits. We consider the CA to have a periodic boundary, i.e.,
the neighbourhoods for the edge cells wrap around to the other end of the CA.
In this work, we consider set sizes of 2 and 3 semi-bent Boolean functions to
generate the output array from the set of input bits. Each Boolean function
involves a set of 2 operations. The first operation is the application of a CA
rule on the set of 8 input bits. After first step, an intermediary array is created
whose bits are then XORed to get one bit. This is the second step. The size of
this intermediary array depends on the size of the neighbourhood of the CA rule
(Boolean function). In our design, the size of the intermediary array is always 6,
as we are only work with CA rules of neighbourhood size 3 for both the set sizes
of rules. Each intermediary array produces only one of the output bits. Hence,
the process of creating the intermediary array is iterated 8 times in order to get
the 8 output bits. During each of these iterations, the neighbourhood cells do not
overlap with the initial cell. Hence, during each iteration to produce one output
bit, it can be said that the boundary is fixed at 8 cells starting from the cell
indexed at start and ending at the cell indexed at (start + nbr size)%8. Here,
it is to be remarked that for periodic boundary conditions, the constructions
from [1] does not work as it is not possible to prove that the resulting Boolean
function has the same degree as the local rule [9]. The pseudocode for this has
been given below in Algorithm1. rule is the CA rule which we will be applying
on the input. nbr size is the neighbourhood size on which the CA rule is applied.
len is the size of the input CA (here 8). start indicates the neighbourhood offset.
2 steps together make the semi-bent function. Semi-bent functions are known for

S-boxes Using CA and RL 23

Fig. 1. First iteration of Algorithm 1 applying a CA rule of neighbourhood size nbr size
to a set of bits of length len generating len−nbr size+1 output bits which are further
XORed to get a single bit. Here, start = 1, and in our design nbr size = 3 bits and
len = 8 bits.

Fig. 2. Second iteration of Algorithm 1 applying a CA rule of neighbourhood size
nbr size to a set of bits of length len generating len − nbr size + 1 output bits which
are further XORed to get a single bit. Here, start = 2, and in our design nbr size = 3
bits and len = 8 bits.

their high cryptographic standard, exhibiting properties of high nonlinearity and
low differential uniformity. Mariot et al. [1] discovered several CA based semi-
bent functions using varying neighbourhood sizes. For our use, we narrowed
down to the 56 CA rules of neighbourhood size 3. We will use these rules in the
construction of the S-boxes.

24 T. Ayyagari et al.

Algorithm 1
function Rule OP(rule,nbr size,len,start)

outputs ← ∅
i ← start
max iter ← start + len − nbr size + 1
while i < max iter do

nbr ← ∅
j ← 0
while j < nbr size do

nbr.Append(CA[(i + j)%len])
end while
outputs.Append(rule(nbr))
i ← i + 1

end while
return

⊕

bit∈outputs

bit

end function

6.2 Substitution Box

Our design is implemented as a CA consisting of 8 cells. The CA rules are semi-
bent functions as discussed in the previous section. In this work, we discuss 2
designs of S-boxes. In the first design, we use 2 CA rules, each generating 4 bits
of the final output. In the second design, we use 3 CA rules, 2 of which generate
3 bits towards the final output and the last one generating only 2. The S-box
pseudocode has been described in Algorithm 2. The S-box takes in the set of
CA rules as parameter. input size is the length of the CA (8 in our case) and
num rules represents the number of rules we are using in the design.

6.3 Reinforcement Learning

In this work, we will be using Reinforcement Learning to find suitable sets of
semi-bent functions to use in our S-box design. To solve a problem using RL,
it first has to be formulated as a Markov Decision Process. So we start by
identifying our states, rewards and actions with respect to our design. We define
the state space as all possible k-permutations of all semi-bent functions, where
k ∈ {2, 3}. The number of permutations of k items from n objects is given by

nP k =
n!

(n − k)!
(8)

where k is the number of rules selected and n is the total number of rules. The
state space is discrete. Each permutation of the set of rules can be considered as
a different state and hence, each state varies by at least one semi-bent function.
When considering 2 semi-bent functions, the total space consists of 56P 2 = 3080
different states and in the 3 semi-bent functions design, we have 56P 3 = 166320
states. The set of actions are also discrete and can be considered as the swapping

S-boxes Using CA and RL 25

Algorithm 2
function Sbox(rules)

outputs ← ∅
for each possible input ip do

output ← ∅
start ← 0
k ← ceil(input size/num rules)
for all rule in rules do

i ← 0
while i < k do

op ← RULE OP (rule, 3, input size, ip, start)
output.Append(op)
start ← start + 1
i ← i + 1

end while
end for
outputs.Append(output[0 : 7]) � Only the first 8 bits of the output are taken

end for
return outputs

end function

of a rule for another rule. The reward for transitioning from one state to another
is the cryptographic strength of the latter state given as

strength = (scaled NL + (100 − scaled DU))/2 (9)

where strength is the cryptographic strength of the current set of rules in the
S-box. The scaled nonlinearity of the S-box denoted by scaled NL is

scaled NL = (NL/112) ∗ 100 (10)

scaled DU is the scaled differential uniformity of the S-box.

scaled DU = ((DU − 4)/(128 − 4)) ∗ 100 (11)

The scaling was done with respect to the values attained by the AES S-box
[6]. The policy is chosen to be epsilon greedy, that is, with epsilon probability,
the agent chooses a non greedy action. We talk about greedy/non-greedy with
respect to the calculated state value or the state action value. We use the on-
policy Sarsa algorithm [4] to calculate the state action value pairs from the
information gathered during exploration. We use the concept of average reward
in our Sarsa algorithm [4]. This is used in our problem as our problem deals with
a continuous task. We chose to use the value-function approximation method [4],
given the large state spaces. An Artificial Neural Network (ANN) was chosen
to be the function approximator given the nonlinear relationship between the
rules used and the strength of the state. The function approximator is used
to approximate the value of a given state, given the input parameters from a
given state. In our design, we give the rules used in that particular state as the

26 T. Ayyagari et al.

parameters so as to calculate the value of the state using the rules used in that
state. For each rule, the input array to the ANN is flattened, so as to achieve a
distinct array for each distinct permutation of rules. In the 2 rule design, there
are 2 positions for the rules and 56 rules can be inserted in each space. Hence the
size of the input array to the ANN will be a binary array of length 2 ∗ 56 = 112.

We define the reward for transitioning from state s1 to state s2 as

reward = strength(s2) (12)

In other words, the immediate reward we get for transitioning to state s2 from
s1 is the cryptographic strength of the state s2. This indicates how good that
particular transition is for us.

7 Results

We ran the experiment with set sizes of both 2 and 3 semi-bent Boolean func-
tions. We ran the RL algorithm with each configuration 10 times, each time the
algorithm traversed fifty unique states. The results obtained are summarized in
Table 1. Set Size is the number of CA rules used in the S-box. The columns DU,
NL and Strength represent the best values obtained for Differential Uniformity,
Nonlinearity and Strength (computed using 9) by the particular design. Strength
is the average strength of the S-boxes that were explored during the ten runs.
σStrength gives the standard deviation of the average strengths obtained by the
S-boxes in the ten runs. The best possible properties obtained of the S-boxes cre-
ated from the design consisting of 2 rules had a differential uniformity of 32 and
nonlinearity of 96. There were multiple states that gave these properties. With
the design consisting of 3 rules, the best S-box obtained had a nonlinearity of 96
and differential uniformity of 16. Again, there were multiple states that gave this
result. The values obtained are on par with the values obtained using Genetic
Programming. Furthermore, our design using 3 semi-bent functions was able to
outperform the S-box obtained using genetic programming in both differential
uniformity as well as nonlinearity. The genetic programming based S-box had a
maximum differential uniformity and nonlinearity of 20 and 82 respectively [2].

Table 1. Summary of the results

Set Size DU NL Strength Strength σStrength

2 32 96 81.57 58.42 2.51

3 16 96 88.02 59.72 3.04

S-boxes Using CA and RL 27

8 Conclusion and Future Work

It can be successfully concluded that not only genetic programming but rein-
forcement learning can also be used to generate S-boxes with strong crypto-
graphic properties. The semi-bent Boolean function based S-boxes are relatively
lightweight in their implementation as well.

Our work is heavily constrained by the computational resources and time. As
Reinforcement Learning is a computationally intensive task, it requires very high
performance computing machines. Certain computations such as the calculation
of cryptographic properties is also a very compute intensive task. In our work,
we only explored S-boxes created by 2 and 3 semi-bent functions. This work can
be further expanded by increasing the number of rules used to 4, 5, etc. The
manner of usage of rules can also be changed. In our work, the rules were used
in an in-order manner. This can be changed to alternating rules, or randomly
selecting rules from a subset of the rules. In the reinforcement learning part, a
lot can be expanded and built on. Other control algorithms such as the off-policy
Q-learning, or Expected Sarsa, can be used instead of the Sarsa algorithm used
in our design. Other policies can also be implemented such as policy gradient
methods instead of the epsilon greedy policy used in our design. The parameters
to the function approximators (ANN) can be changed and experimented with.
This work only focused on 8× 8 S-boxes, we can also try to modify the design
to work on different input and output sizes.

A Appendix

The source code for the S-box design and RL implementation is available at
https://github.com/tarunaygr/RL-based-S-boxes.

References

1. Mariot, L., Saletta, M., Leporati, A., et al.: Exploring semi-bent Boolean functions
arising from cellular automata. In: Gwizda�l�la, T.M., Manzoni, L., Sirakoulis, G.C.,
Bandini, S., Podlaski, K. (eds.) Cellular Automata: 14th International Conference on
Cellular Automata for Research and Industry, ACRI 2020, Lodz, Poland, December
2–4, 2020, Proceedings, vol. 12599, pp. 56–66. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-69480-7 7

2. Picek, S., Mariot, L., Leporati, A., Jakobovic, D.: Evolving S-boxes based on cellu-
lar automata with genetic programming. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion, GECCO 2017, pp. 251–252. Associa-
tion for Computing Machinery, New York (2017). https://doi.org/10.1145/3067695.
3076084

3. Kari, J.J.: Basic concepts of cellular automata. In: Rozenberg, G., Bäck, T., Kok,
J.N. (eds.) Handbook of Natural Computing, pp. 3–24. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-540-92910-9 1

4. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. The
MIT Press, Cambridge, Massachusetts, London, England (2018)

https://github.com/tarunaygr/RL-based-S-boxes
https://doi.org/10.1007/978-3-030-69480-7_7
https://doi.org/10.1007/978-3-030-69480-7_7
https://doi.org/10.1145/3067695.3076084
https://doi.org/10.1145/3067695.3076084
https://doi.org/10.1007/978-3-540-92910-9_1

28 T. Ayyagari et al.

5. Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601
(1983)

6. afify, E., Khalil, A.T., El sobky, W.I., Alez, R.A.: Performance analysis of advanced
encryption standard (AES) S-boxes. Int. J. Recent Technol. Eng. (IJRTE) 9(1),
2214–2218 (2020). https://doi.org/10.35940/ijrte.F9712.059120

7. Mariot, L., Picek, S., Leporati, A., Jakobovic, D.: Cellular automata based S-
boxes. Cryptogr. Commun. 11(1), 41–62 (2018). https://doi.org/10.1007/s12095-
018-0311-8

8. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge
University Press, Cambridge (2021). https://doi.org/10.1017/9781108606806

9. Mariot, L., Saletta, M., Leporati, A., et al.: Heuristic search of (semi-)bent functions
based on cellular automata. Nat. Comput. (2022). https://doi.org/10.1007/s11047-
022-09885-3

https://doi.org/10.35940/ijrte.F9712.059120
https://doi.org/10.1007/s12095-018-0311-8
https://doi.org/10.1007/s12095-018-0311-8
https://doi.org/10.1017/9781108606806
https://doi.org/10.1007/s11047-022-09885-3
https://doi.org/10.1007/s11047-022-09885-3

	Exploring Lightweight S-boxes Using Cellular Automata and Reinforcement Learning
	1 Introduction
	2 Cellular Automata
	3 Substitution Boxes (S-boxes)
	3.1 Nonlinearity
	3.2 Differential Uniformity

	4 Semi-bent Boolean Functions
	5 Reinforcement Learning
	6 Our Design
	6.1 Boolean Functions
	6.2 Substitution Box
	6.3 Reinforcement Learning

	7 Results
	8 Conclusion and Future Work
	A Appendix
	References

